USE OF AGRICULTURAL WASTE FOR BIOENERGY

Crislaine Costa Calazans, Juliana Lopes Souza, Valdinete Vieira Nunes, Fernanda Evangelista de Almeida, Renata Silva Mann

Resumo


Agricultural residues stand out as potential raw materials for the production of renewable fuels. Based on this scenario, in order to map the patents filed, related to the use of agricultural waste in substitution to fossil fuels, this work was carried out. From the technological prospecting of patent deposits at the bases of the National Institute of Industrial Property - INPI, Latin American Patent Bank - LATIPAT, World Intellectual Property Organization (WIPO), European Patent Office (European Patent Office) -EPO) data were obtained. The search was carried out from the search for keywords in the field of application title or abstract (EPO and LATIPAT), Front Page (WIPO) and abstract (INPI). The documents found were computed individually, in relation to the deposit year, country of origin, depositor and International Patent Classification (CIP). In a preliminary search, 1,514 documents were found for the WIPO database, 1,176 filed with EPO, 20 patents with LATIPAT and 11 records at the INPI. After a second analysis, 24 patents were identified that met the search inclusion character, that is, innovations aimed at the use of agricultural waste in substitution for fossil fuel. China, with 11 registered patents, is the major driver of technological innovations involving the use of agricultural waste as bioenergy; followed by patents filed with the European Patent Office (3), Korea (2) and the United States (2).


Palavras-chave


Anteriority; Biomass; Patents

Texto completo:

PDF

Referências


AZEVEDO, A. D. R. Processo de produção de pelete oriundo de produtos ou resíduos de produtos agrícolas utilizado para queima e geração de energia. Depositante: Alfonso Dileomar Rodrigues de Azevedo. PI 0705915-9 A2. Depósito: 13 set. 2007. Concessão: 05 mai. 2009.

BASSO, D. et al. Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste management, v. 47, p. 114-121, 2016.

BRANSON, J. D. Sistema e método para extração de energia a partir de resíduo agrícola. Depositante: Jerrel Dale Branson. PI 0215051-4 A2. Depósito: 17 dez. 2002. Concessão: 07 dez. 2004.

CHENG, J. (Ed.). Biomass to renewable energy processes. CRC press, 2017. 437 p.

DECHEZLEPRÊTRE, A.; SATO, M. The impacts of environmental regulations on competitiveness. Review of Environmental Economics and Policy, v. 11, n. 2, p. 183-206, 2017.

FAO – Food and Agriculture Organization of the United Nations. Disponível em: . Acesso em: 28 jun. 2020.

GUARIEIRO, L. L. N.; TORRES, E. A.; ANDRADE, JB de. Energia verde. Revista Ciência Hoje, v. 48, 2011.

HUANG, X.; HUANG, J. Métodos de conversão direta de biomassa em gás de síntese de alta qualidade. Depositante: Xiaodi Huang e Jiann-Yang Hwang. BR 11 2013 002701 0 A2. Depósito: 03 ago. 2011. Concessão: 31 mai. 2016.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Levantamento Sistemático da Produção Agrícola (SIDRA). Disponível em: https://sidra.ibge.gov.br/tabela/1618. Acesso em: 21 jun. 2020.

KAPPLER, G. et al. Conversion of Lignocellulosic Biomass Through Pyrolysis to Promote a Sustainable Value Chain for Brazilian Agribusiness. Lignocellulosic Biorefining Technologies, p. 265-283, 2020.

LI, Y.; KHANAL, S. K. Bioenergy: principles and applications. John Wiley & Sons, 2016.

LIPPE, M. et al. The Origin of Biomass. In: Bioeconomy for Beginners. Springer, Berlin, Heidelberg, 2020. p. 11-66.

NAQVI, S. R. et al. Potential of biomass for bioenergy in Pakistan based on present case and future perspectives. Renewable and Sustainable Energy Reviews, v. 81, p. 1247-1258, 2018.

OMER, A. M. Green energies and the environment. Renewable and sustainable energy reviews, v. 12, n. 7, p. 1789-1821, 2008.

PACHECO, F. Energias Renováveis: breves conceitos. Conjuntura e Planejamento, v. 149, p. 4-11, 2006.

PINCHUK, V. A.; SHARABURA, T. A.; KUZMIN, A. V. The effect of water phase content in coal-water fuel on regularities of the fuel ignition and combustion. Fuel Processing Technology, v. 191, p. 129-137, 2019.

RADHAKRISHNAN, S. et al. Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine. Heat and Mass Transfer, v. 55, n. 4, p. 1229-1237, 2019.

SHERWOOD, J. The significance of biomass in a circular economy. Bioresource Technology, v. 300, p. 122755, 2020.

TANIGURO, K. Método de tratamento de material de biomassa, e método de utilização de energia térmica. Depositante: Katsumori Taniguro. BR 11 2012 007788 0 A2. Depósito: 17 set. 2010. Concessão: 20 mar. 2018.

TOKLU, E. Biomass energy potential and utilization in Turkey. Renewable Energy, v. 107, p. 235-244, 2017.

WALL, J. D. et al. (Ed.). Bioenergy. Washington, DC: ASM Press, 2008. 454p.

Waste management, v. 47, p. 114-121, 2016.

ZUIN, V. G.; RAMIN, L. Z. Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. In: Chemistry and Chemical Technologies in Waste Valorization. Springer, Cham, 2018. p. 229-282.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2021 Revista INGI - Indicação Geográfica e Inovação

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.

Licença Creative Commons
Revista INGI - Indicação Geográfica e Inovação. A Revista INGI está licenciada com a Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional

ISSN: 2594-8288

qualis B3

Com DOI por artigo.

Esta Revista é uma publicação da Associação Acadêmica de Propriedade Intelectual - API - www.api.org.br 

A REVISTA INGI está cadastrada nos sistemas: